Answer
$$s(t)=1.32(1-e^{-0.606t})$$
Work Step by Step
We have: $s(t)=\dfrac{v_0 m}{k}(1-e^{-kt/m} )$
Since, $\dfrac{v_0 m}{k}=1.32$
Plug in the given data; we have: $\dfrac{(0.80)(49.90)}{k}=1.32$
$\implies k \approx 30.2424$
Now, $$s(t)=\dfrac{v_0 m}{k}(1-e^{-kt/m} )=1.32(1-e^{-(30)t/49.90} )$$
So, $$s(t)=1.32(1-e^{-0.606t})$$