Answer
$x^2+y^2=K$
Work Step by Step
We have the differential equation:
$-\dfrac{dx}{dy}=\dfrac{y}{x}$
$\implies -x \ dx =y \ dy$
Now, we will integrate it.
$-\int x dx=\int y dy$
$\implies -\dfrac{x^2}{2}=\dfrac{y^2}{2}+C$
$\implies \dfrac{-x^2-y^2}{2}=C$
$\implies x^2+y^2=-2C$
This can be re-written as: $x^2+y^2=K$