Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 52

Answer

$$y = \frac{x}{{\sqrt {{x^2} + 1} }} + 1$$

Work Step by Step

$$\eqalign{ & {\left( {{x^2} + 1} \right)^2}\frac{{dy}}{{dx}} = \sqrt {{x^2} + 1} ,\,\,\,\,\,\,\,y\left( 0 \right) = 1 \cr & \cr & {\text{separate the variables}} \cr & \frac{{dy}}{{dx}} = \frac{{\sqrt {{x^2} + 1} }}{{{{\left( {{x^2} + 1} \right)}^2}}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{{{\left( {{x^2} + 1} \right)}^{3/2}}}} \cr & \cr & {\text{Use Trigonometric Substitutions:}} \cr & {\text{We set}}{\text{, }}x = \tan \theta ,{\text{ }}dx = {\sec ^2}\theta d\theta \cr & {\text{With these substitutions}}{\text{, we have}} \cr & y = \int {\frac{1}{{{{\left( {{{\tan }^2}\theta + 1} \right)}^{3/2}}}}} \left( {{{\sec }^2}\theta d\theta } \right) \cr & y = \int {\frac{1}{{{{\left( {{{\sec }^2}\theta } \right)}^{3/2}}}}} \left( {{{\sec }^2}\theta d\theta } \right) \cr & y = \int {\frac{1}{{{{\sec }^3}\theta }}} \left( {{{\sec }^2}\theta d\theta } \right) \cr & y = \int {\frac{1}{{\sec \theta }}} d\theta \cr & y = \int {\cos \theta } d\theta \cr & y = \sin \theta + C \cr & \cr & {\text{We have that }}x = \tan \theta {\text{; then sin}}\theta = \frac{x}{{\sqrt {{x^2} + 1} }} \cr & y = \frac{x}{{\sqrt {{x^2} + 1} }} + C\,\,\,\left( {\bf{1}} \right) \cr & \cr & {\text{use initial condition }}y\left( 0 \right) = 1 \cr & 1 = \frac{0}{{\sqrt {{0^2} + 1} }} + C\,\, \cr & C = 1 \cr & \cr & {\text{Then}}{\text{, substituting }}C = 1{\text{ in }}\left( {\bf{1}} \right) \cr & y = \frac{x}{{\sqrt {{x^2} + 1} }} + 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.