Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 25

Answer

$$ - \frac{x}{{\sqrt {{x^2} - 1} }} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{{{\left( {{x^2} - 1} \right)}^{3/2}}}}} \cr & {\text{We set}}{\text{, }}x = \sec \theta ,{\text{ }}dx = \sec \theta \tan \theta d\theta \cr & {\text{With these substitutions}}{\text{, we have}} \cr & \int {\frac{{dx}}{{{{\left( {{x^2} - 1} \right)}^{3/2}}}}} = \int {\frac{{\sec \theta \tan \theta d\theta }}{{{{\left( {{{\left( {\sec \theta } \right)}^2} - 1} \right)}^{3/2}}}}} \cr & = \int {\frac{{\sec \theta \tan \theta d\theta }}{{{{\left( {{{\sec }^2}\theta - 1} \right)}^{3/2}}}}} \cr & \cr & {\text{Use the fundamental identity }}{\sec ^2}\theta - 1 = {\tan ^2}\theta \cr & = \int {\frac{{\sec \theta \tan \theta d\theta }}{{{{\left( {{{\tan }^2}\theta } \right)}^{3/2}}}}} \cr & = \int {\frac{{\sec \theta \tan \theta d\theta }}{{{{\tan }^3}\theta }}} \cr & \cr & {\text{simplifying}} \cr & = \int {\frac{{\sec \theta }}{{{{\tan }^2}\theta }}d\theta = \int {\left( {\frac{1}{{\cos \theta }}} \right)\left( {\frac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta }}} \right)} d\theta } \cr & = \int {\frac{{\cos \theta }}{{{{\sin }^2}\theta }}} d\theta \cr & = \int {{{\left( {\sin \theta } \right)}^{ - 2}}\left( {\cos \theta } \right)} d\theta \cr & \cr & {\text{integrate}} \cr & = \frac{{{{\left( {\sin \theta } \right)}^{ - 1}}}}{{ - 1}} + C \cr & = - \frac{1}{{\sin \theta }} + C \cr & = - \csc \theta + C \cr & \cr & {\text{write in terms of }}x,{\text{ csc}}\theta = \frac{x}{{\sqrt {{x^2} - 1} }} \cr & = - \frac{x}{{\sqrt {{x^2} - 1} }} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.