Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 18

Answer

$$ - \frac{{\sqrt {{x^2} + 1} }}{x} + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{{x^2}\sqrt {{x^2} + 1} }}} \cr & {\text{Using Trigonometric Substitutions}} \cr & {\text{We set}}{\text{, }}x = \tan \theta,{\text{ }}dx = {\sec ^2}\theta d\theta \cr & {\text{With these substitutions}}{\text{, we have}} \cr & \int {\frac{{dx}}{{{x^2}\sqrt {{x^2} + 1} }}} = \int {\frac{{{{\sec }^2}\theta d\theta }}{{{{\left( {\tan \theta } \right)}^2}\sqrt {{{\tan }^2}\theta + 1} }}} \cr & = \int {\frac{{{{\sec }^2}\theta d\theta }}{{{{\tan }^2}\theta \sqrt {{{\tan }^2}\theta + 1} }}} \cr & {\text{use the fundamental identity }}{\sec ^2}\theta - 1 = {\tan ^2}\theta \cr & = \int {\frac{{{{\sec }^2}\theta d\theta }}{{{{\tan }^2}\theta \sqrt {{{\sec }^2}\theta } }}} \cr & {\text{simplifying}} \cr & = \int {\frac{{{{\sec }^2}\theta d\theta }}{{{{\tan }^2}\theta \sec \theta }}} \cr & = \int {\frac{{\sec \theta d\theta }}{{{{\tan }^2}\theta }}} \cr & = \int {\left( {\frac{1}{{\cos \theta }}} \right)\left( {\frac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta }}} \right)} d\theta \cr & = \int {\frac{{\cos \theta }}{{{{\sin }^2}\theta }}} d\theta \cr & u = \sin \theta,\,\,\,du = \cos \theta \cr & = \int {\frac{1}{{{u^2}}}} du \cr & {\text{Integrate}} \cr & = - \frac{1}{u} + C \cr & = - \frac{1}{{\sin \theta }} + C \cr & {\text{write in terms of }}x,{\text{ }}\sin \theta = \frac{x}{{\sqrt {{x^2} + 1} }} \cr & = - \frac{{\sqrt {{x^2} + 1} }}{x} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.