Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 87

Answer

$$\sqrt 3 - 1$$

Work Step by Step

$$\eqalign{ & \int_{\sqrt 2 }^2 {\frac{{{{\sec }^2}\left( {{{\sec }^{ - 1}}x} \right)dx}}{{x\sqrt {{x^2} - 1} }}} \cr & {\text{use the substitution method}}{\text{:}} \cr & u = {\sec ^{ - 1}}x,{\text{ so that }}du = \frac{1}{{x\sqrt {{x^2} - 1} }}dx \cr & {\text{the new limits on }}t{\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}x = 2,{\text{ then }}u = {\sec ^{ - 1}}2 = \pi /3 \cr & \,\,\,\,\,\,{\text{If }}x = \sqrt 2,{\text{ then }}u = {\sec ^{ - 1}}\left( {\sqrt 2 } \right) = \pi /4 \cr & {\text{then}} \cr & \int_{\sqrt 2 }^2 {\frac{{{{\sec }^2}\left( {{{\sec }^{ - 1}}x} \right)dx}}{{x\sqrt {{x^2} - 1} }}} = \int_{\pi /4}^{\pi /3} {{{\sec }^2}u} du \cr & {\text{integrate}} \cr & = \left( {\tan u} \right)_{\pi /4}^{\pi /3} \cr & = \tan \left( {\frac{\pi }{3}} \right) - \tan \left( {\frac{\pi }{4}} \right) \cr & {\text{simplify}} \cr & = \sqrt 3 - 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.