Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 53

Answer

$$ - \frac{\pi }{{12}}$$

Work Step by Step

$$\eqalign{ & \int_{ - 1}^{ - \sqrt 2 /2} {\frac{{dy}}{{y\sqrt {4{y^2} - 1} }}} \cr & = \int_{ - 1}^{ - \sqrt 2 /2} {\frac{{dy}}{{y\sqrt {{{\left( {2y} \right)}^2} - 1} }}} \cr & {\text{use the substitution method}}{\text{.}} \cr & u = 2y,{\text{ so that }}du = 2dy \cr & {\text{the new limits on }}t{\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}y = - 2/\sqrt 2,{\text{ then }}u = 2\left( { - \sqrt 2 /2} \right) = - \sqrt 2 \cr & \,\,\,\,\,\,{\text{If }}y = - 1,{\text{ then }}u = 2\left( { - 1} \right) = - 2 \cr & {\text{then}} \cr & \int_{ - 1}^{ - \sqrt 2 /2} {\frac{{dy}}{{y\sqrt {{{\left( {2y} \right)}^2} - 1} }}} = \int_{ - 2}^{ - 4\sqrt 2 } {\frac{{du/2}}{{y\sqrt {{u^2} - 1} }}} = \int_{ - 2}^{ - 4\sqrt 2 } {\frac{{du}}{{2y\sqrt {{u^2} - 1} }}} \cr & = \int_{ - 2}^{ - \sqrt 2 } {\frac{{du}}{{u\sqrt {{u^2} - 1} }}} \cr & {\text{intgrate by using the formula }}\int {\frac{{du}}{{u\sqrt {{u^2} - {a^2}} }} = \frac{1}{a}se{c^{ - 1}}\left| {\frac{u}{a}} \right| + C\,\,\,\left( {{\text{see page 419}}} \right)} \cr & {\text{with }}a = 1 \cr & = \left( {{{\sec }^{ - 1}}\left| u \right|} \right)_{ - 2}^{ - \sqrt 2 } + C \cr & = {\sec ^{ - 1}}\left| { - \sqrt 2 } \right| - {\sec ^{ - 1}}\left| { - 2} \right| \cr & = \frac{\pi }{4} - \frac{\pi }{3} \cr & = - \frac{\pi }{{12}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.