Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 64

Answer

$$4{\tan ^{ - 1}}\left( {\frac{\pi }{4}} \right)$$

Work Step by Step

$$\eqalign{ & \int_1^{{e^{\pi /4}}} {\frac{{4dt}}{{t\left( {1 + {{\ln }^2}t} \right)}}} \cr & {\text{use the substitution method}}{\text{.}} \cr & u = \ln t,{\text{ so that }}du = \frac{1}{t}dt \cr & {\text{the new limits on }}t{\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}t = {e^{\pi /4}},{\text{ then }}u = \ln {e^{\pi /4}} = \pi /4 \cr & \,\,\,\,\,\,{\text{If }}t = 1,{\text{ then }}u = \ln 1 = 0 \cr & {\text{then}} \cr & \int_1^{{e^{\pi /4}}} {\frac{{4dt}}{{t\left( {1 + {{\ln }^2}t} \right)}}} = 4\int_0^{\pi /4} {\frac{{du}}{{1 + {u^2}}}} \cr & {\text{integrate by using the formula }}\int {\frac{{du}}{{{a^2} + {u^2}}} = \frac{1}{a}{{\tan }^{ - 1}}\left( {\frac{u}{a}} \right) + C\,\,\,\left( {{\text{see page 419}}} \right)} \cr & {\text{with }}a = 1 \cr & = 4\left( {{{\tan }^{ - 1}}\left( u \right)} \right)_0^{\pi /4} + C \cr & = 4{\tan ^{ - 1}}\left( {\frac{\pi }{4}} \right) - 4{\tan ^{ - 1}}\left( 0 \right) \cr & = 4{\tan ^{ - 1}}\left( {\frac{\pi }{4}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.