Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.6 - Inverse Trigonometric Functions - Exercises 7.6 - Page 421: 47

Answer

$$\frac{1}{{\sqrt 2 }}se{c^{ - 1}}\left| {\frac{{5x}}{{\sqrt 2 }}} \right| + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{x\sqrt {25{x^2} - 2} }}} \cr & {\text{write }}25{x^2} - 2{\text{ as }}{\left( {5x} \right)^2} - {\left( {\sqrt 2 } \right)^2} \cr & {\text{use the substitution method}}{\text{.}} \cr & u = 5x,{\text{ so that }}du = 5dx,\,\,\,\,\,\,dx = \frac{{du}}{5} \cr & {\text{then}} \cr & \int {\frac{{dx}}{{x\sqrt {25{x^2} - 2} }}} = \int {\frac{{du/5}}{{x\sqrt {{u^2} - {{\left( {\sqrt 2 } \right)}^2}} }}} \cr & = \int {\frac{{du}}{{5x\sqrt {{u^2} - {{\left( {\sqrt 2 } \right)}^2}} }}} \cr & = \int {\frac{{du}}{{u\sqrt {{u^2} - {{\left( {\sqrt 2 } \right)}^2}} }}} \cr & {\text{intgrate by using the formula }}\int {\frac{{du}}{{u\sqrt {{u^2} - {a^2}} }} = \frac{1}{a}se{c^{ - 1}}\left| {\frac{u}{a}} \right| + C\,\,\,\left( {{\text{see page 419}}} \right)} \cr & {\text{with }}a = \sqrt 2 \cr & = \int {\frac{{du}}{{u\sqrt {{u^2} - {{\left( {\sqrt 2 } \right)}^2}} }}} = \frac{1}{{\sqrt 2 }}se{c^{ - 1}}\left| {\frac{u}{{\sqrt 2 }}} \right| + C \cr & {\text{write in terms of }}x;{\text{ replace }}5x{\text{ for }}u \cr & = \frac{1}{{\sqrt 2 }}se{c^{ - 1}}\left| {\frac{{5x}}{{\sqrt 2 }}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.