Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 89

Answer

$$\frac{6}{{\ln 7}}$$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /2} {{7^{\cos t}}\sin t} dt \cr & {\text{Use substitution:}}\cr & {\text{Let }}u = \cos t,{\text{ then }}du = - \sin tdt,\,\,\,\,\sin tdt = - du \cr & {\text{changing the limits of integration}} \cr & \,\,\,\,\,\,{\text{For }}x = \pi /2,{\text{ }}u = \cos \left( {\pi /2} \right) = 0 \cr & \,\,\,\,\,\,{\text{For }}x = 0,{\text{ }}u = \cos \left( 0 \right) = 1 \cr & {\text{write the integral in terms of }}u \cr & \int_0^{\pi /2} {{7^{\cos t}}\sin t} dt = \int_1^0 {{7^u}} \left( { - du} \right) \cr & = - \int_1^0 {{7^u}} du \cr & {\text{integrate using }}\int {{a^u}} du = \frac{{{a^u}}}{{\ln a}} + C \cr & = - \left( {\frac{{{7^u}}}{{\ln 7}}} \right)_1^0 \cr & {\text{using properties of the integrals}} \cr & = \left( {\frac{{{7^u}}}{{\ln 7}}} \right)_0^1 \cr & {\text{use fundamental theorem of calculus }}\cr & \int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr & = \frac{{{7^1} - {7^0}}}{{\ln 7}} \cr & {\text{simplifying}} \cr & = \frac{6}{{\ln 7}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.