Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 48

Answer

$$-\sin \left( 1 \right)$$

Work Step by Step

$$\eqalign{ & \int_0^{\sqrt {\ln \pi } } {2x{e^{{x^2}}}\cos \left( {{e^{{x^2}}}} \right)} dx \cr & {\text{Use substitution}}{\text{. Let }}u = {e^{{x^2}}},{\text{ so that }}\frac{{du}}{{dx}} = 2x{e^{{x^2}}} \cr & {\text{The new limits on }}u{\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}\theta = \sqrt {\ln \pi },{\text{ then }}u = {e^{{{\left( {\sqrt {\ln \pi } } \right)}^2}}} = \pi \cr & \,\,\,\,\,\,{\text{If }}\theta = 0,{\text{ then }}u = {e^{{{\left( 0 \right)}^2}}} = 1 \cr & {\text{Then}} \cr & \int_0^{\sqrt {\ln \pi } } {2x{e^{{x^2}}}\cos \left( {{e^{{x^2}}}} \right)} dx = \int_1^\pi {\cos u} du \cr & {\text{Integrate}} \cr & \int_0^\pi {\cos u} du = \left( {\sin u} \right)_1^\pi \cr & {\text{Use fundamental theorem of calculus }}\int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr & = \sin \left( \pi \right) - \sin \left( 1 \right) \cr & {\text{Simplifying}} \cr & = 0 - \sin \left( 1 \right) \cr & = -\sin \left( 1 \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.