Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.3 - The Definite Integral - Exercises 5.3 - Page 276: 82

Answer

a) $av(f+g)=av(f)+av(g)$ b) $av(kf)=k \cdot av(f)$ c) $\int_a^b f(x) dx \leq \int_a^b g(x) dx$

Work Step by Step

(a) Need to use definition. $ av(f)=\dfrac{1}{(b-a)} \int_a^b f(x) dx$ $av(f+g)=\dfrac{1}{(b-a)} \int_a^b f(x) dx+\dfrac{1}{(b-a)} \int_a^b g(x)dx$ or, $av(f+g)=av(f)+av(g)$ (b) Need to use definition. $ av(f)=\dfrac{1}{(b-a)} \int_a^b f(x) dx$ $av(kf)=k[\dfrac{1}{(b-a)} \int_a^b f(x) dx]$ $\implies av(kf)=k \cdot av(f)$ c) Need to use definition. $ av(f)=\dfrac{1}{(b-a)} \int_a^b f(x) dx$ Here, we have $av(kf) \leq av (g)$ $\implies \dfrac{1}{(b-a)} \int_a^b f(x) dx \leq \dfrac{1}{(b-a)} \int_a^b g(x) dx$ Hence, $\int_a^b f(x) dx \leq \int_a^b g(x) dx$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.