Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.3 - The Definite Integral - Exercises 5.3 - Page 276: 64

Answer

$6$

Work Step by Step

Apply RIEMANN SUM: $\Sigma_{k=1}^n f(c_k) \triangle x=\Sigma_{k=1}^n (\dfrac{8k}{n^2}+\dfrac{2}{n})$ or, $\Sigma_{k=1}^n (\dfrac{8k}{n^2}+\dfrac{2}{n})=\dfrac{8k}{n^2}\Sigma_{k=1}^n (k+\dfrac{2}{n}) $ where $\triangle x=\dfrac{b-a}{n}$ and $c_k=a+\dfrac{k(b-a)}{n}$ Now, $\lim\limits_{n \to \infty} \Sigma_{k=1}^n f(c_k) \triangle x=\lim\limits_{n \to \infty}\dfrac{4(n+1)}{n}+2$ This implies that $\lim\limits_{n \to \infty}6+\dfrac{4}{n}=6$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.