Answer
$-tan^{-1}(\frac{x}{2})$
Work Step by Step
$y=\ln (x^2+4)-x \tan^{-1}(\frac{x}{2})$
Derive using the chain rule:
$\frac{dy}{dx}=\frac{2x}{x^2+4}-tan^{-1}(\frac{x}{2})-x[\frac{\frac{1}{2}}{1+(\frac{x}{2})^2}]$
$=\frac{2x}{x^2+4}-tan^{-1}(\frac{x}{2})-\frac{2x}{4+x^2}$
$=-tan^{-1}(\frac{x}{2})$