Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.6 - Limits Involving Infinity; Asymptotes of Graphs - Exercises 2.6 - Page 98: 56

Answer

$ a.\quad +\infty$ $ b.\quad -\infty$ $c.\quad 0$ $d.\displaystyle \quad-\frac{1}{4}$

Work Step by Step

$a.$ When $x\rightarrow-2^{+}$, the absolute value of x is slightly less than 2, $x^{2}$ is a positive number, slightly less than 4 the numerator, $x^{2}-1$ is positive. The denominator has (negative number, absolute value slightly below 4) +(4) (the denominator is positive, close to zero). $\displaystyle \lim_{x\rightarrow-2^{+}}(\frac{x^{2}-1}{2x+4})=+\infty$ $b.$ When $x\rightarrow-2^{-}$, the absolute value of x is slightly greater than 2, $x^{2}$ is a positive number, slightly greater than 4 the numerator, $x^{2}-1$ is positive. The denominator has (negative number, absolute value slightly above 4) +(4) (the denominator is negative, close to zero). $\displaystyle \lim_{x\rightarrow-2^{-}}(\frac{x^{2}-1}{2x+4})=-\infty$ $c.$ Since $f(x)=\displaystyle \frac{x^{2}}{2}-\frac{1}{x}$ is continuous at $x= 1,$ $\displaystyle \lim_{x\rightarrow 1^{+}}f(x)=\lim_{x\rightarrow 1}f(x)=f(1)=\frac{1-1}{2+4}=0$ $d.$ Since $f(x)=\displaystyle \frac{x^{2}}{2}-\frac{1}{x}$ is continuous at $x= 0,$ $\displaystyle \lim_{x\rightarrow 0^{-}}f(x)=\lim_{x\rightarrow 0}f(x)=f(1)=\frac{0-1}{0+4}=-\frac{1}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.