Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.6 - Limits Involving Infinity; Asymptotes of Graphs - Exercises 2.6 - Page 98: 55

Answer

$ a.\quad -\infty$ $ b.\quad +\infty$ $c.\quad 0$ $d.\displaystyle \quad\frac{3}{2}$

Work Step by Step

$a.$ When $x\rightarrow 0^{+}$z the term $\displaystyle \frac{x^{2}}{2}\rightarrow 0$, the term $(-\displaystyle \frac{1}{x})\rightarrow-\infty$ so, $\displaystyle \lim_{x\rightarrow 0^{+}}(\frac{x^{2}}{2}-\frac{1}{x})=-\infty$ $b.$ When $x\rightarrow 0^{-}$ the term $\displaystyle \frac{x^{2}}{2}\rightarrow 0$, the term $(-\displaystyle \frac{1}{x})\rightarrow-(-\infty)$ so, $\displaystyle \lim_{x\rightarrow 0^{-}}(\frac{x^{2}}{2}-\frac{1}{x})=+\infty$ $c.$ Since $f(x)=\displaystyle \frac{x^{2}}{2}-\frac{1}{x}$ is continuous at $x= \sqrt[3]{2}$ $\displaystyle \lim_{x\rightarrow\sqrt[3]{2}}(\frac{x^{2}}{2}-\frac{1}{x})=\frac{\sqrt[3]{4}}{2}-\frac{1}{\sqrt[3]{2}}\cdot\frac{\sqrt[3]{}4}{\sqrt[3]{}4}=\frac{\sqrt[3]{4}}{2}-\frac{\sqrt[3]{4}}{2}=0$ $d.$ Since $f(x)=\displaystyle \frac{x^{2}}{2}-\frac{1}{x}$ is continuous at $x= -1$ $\displaystyle \lim_{x\rightarrow-1}(\frac{x^{2}}{2}-\frac{1}{x})=\frac{(-1)^{2}}{2}-\frac{1}{-1}=\frac{1}{2}+1=\frac{3}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.