Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 15: Multiple Integrals - Section 15.2 - Double Integrals over General Regions - Exercises 15.2 - Page 882: 20



Work Step by Step

We rewrite as: $I= \int_0^{\pi} \int_0^{\sin x} y dy dx$ or, $= \int_0^{\pi} [y^2/2]_0^{\sin x} dx $ Use formula: $ \sin ^2 x= \dfrac{1- \cos 2 x}{2}$ Now, $I=(1/4) \int_0^{\pi} 1-\cos 2x dx$ or, $=(1/4) [\pi -\dfrac{\sin 2 \pi}{2} ]$ So, $I=\dfrac{\pi}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.