Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 11: Parametric Equations and Polar Coordinates - Section 11.6 - Conic Sections - Exercises 11.6 - Page 679: 54

Answer

$ \displaystyle \frac{(x+2)^{2}}{16}-\frac{(y+1)^{2}}{9}=1$ New foci:$\quad (3, -1)$ and $(-7,-1)$ New vertices:$\quad (2, -1)$ and $(-6,-1)$ New center:$\quad (-2,-1)$ New asymptotes:$\displaystyle \quad y-1=\pm\frac{3}{4}(x-2)$

Work Step by Step

Shift left by $2 \Rightarrow$ in the equation, replace $x$ with $x+2$ Shift down by $1 \Rightarrow$ in the equation, replace $y$ with $y+1$ New equation:$\displaystyle \quad \frac{(x+2)^{2}}{16}-\frac{(y+1)^{2}}{9}=1$ The hyperbola $\displaystyle \frac{x^{2}}{16}-\frac{y^{2}}{4}=1$ has the form for which: foci are on the x-axis$, \quad a=4, b=2,$ Center-to-focus distance: $\quad c=\sqrt{a^{2}+b^{2}}=\sqrt{16+9}=5$ Foci: $\quad (\pm c, 0)= \quad (\pm 5, 0)$ Vertices: $\quad (\pm 4, 0)$ Asymptotes:$\quad y=\displaystyle \pm\frac{b}{a}x\Rightarrow \quad y=\displaystyle \pm\frac{3}{4}x$ The translations are such that $(x,y)\rightarrow(x',y')$, where $\left\{\begin{array}{ll} x'=x-2 & \text{... shift left}\\ y'=y-1 & \text{... shift down} \end{array}\right.$ New foci:$\quad (\pm 5-2, 0-1)\Rightarrow\quad (3, -1)$ and $(-7,-1)$ New vertices:$\quad (\pm 4-2, 0-1)\Rightarrow\quad (2, -1)$ and $(-6,-1)$ New center:$\quad (0-2,0-1)\quad =(-2,-1)$ New asymptotes:$\displaystyle \quad y'=\pm\frac{3}{4}x'$ $y-1=\displaystyle \pm\frac{3}{4}(x-2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.