Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 11: Parametric Equations and Polar Coordinates - Section 11.6 - Conic Sections - Exercises 11.6 - Page 679: 50

Answer

$ \displaystyle \frac{(x-3)^{2}}{2}+(y-4)^{2}=1$ New foci:$\quad (2, 4)$ and $(4, 4)$ New vertices:$\quad (3\pm\sqrt{2},4)$ New center:$\quad (3,4)$

Work Step by Step

Shift right by $3 \Rightarrow$ in the equation, replace $x$ with $x-3$ Shift up by $4 \Rightarrow$ in the equation, replace $y$ with $y-4$ New equation:$\displaystyle \quad \frac{(x-3)^{2}}{2}+(y-4)^{2}=1$ The ellipse $\displaystyle \frac{x^{2}}{2}+\frac{y^{2}}{1}=1$ is of the form: Foci on the x-axis: $\quad \displaystyle \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad (a\gt b)$ $a=\sqrt{2},\quad b=$1 Center-to-focus distance: $\quad c=\sqrt{a^{2}-b^{2}}=\sqrt{2-1}=1$ Foci: $\quad(\pm 1, 0)$ Vertices: $\quad (\pm\sqrt{2}, 0)$ The translations are such that $(x,y)\rightarrow(x',y')$, where $\left\{\begin{array}{ll} x'=x+3 & \text{... shift right}\\ y'=y+4 & \text{... shift up} \end{array}\right.$ New foci: $\quad (\pm 1+3, 0+4)\Rightarrow\quad (2, 4)$ and $(4, 4)$ New vertices: $\quad (\pm\sqrt{2}+3, 0+4)\Rightarrow\quad (3\pm\sqrt{2},4)$ New center: $\quad (0+3,0+4)\quad =(3,4)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.