#### Answer

Diverges

#### Work Step by Step

The nth partial sums are: $ s_n=(\ln \sqrt 2 -\ln \sqrt 1)+(\ln \sqrt 3 -\ln \sqrt 2)+(\ln \sqrt 4 -\ln \sqrt 3)+.....(\ln \sqrt {n+1} -\ln \sqrt n)=\ln \sqrt {(n+1)}$
Now, apply limits, we get $\lim\limits_{n \to \infty} s_n=\lim\limits_{n \to \infty} \ln (\sqrt {(n+1)})=\infty$
Thus, when $s_n \to \infty$ as $n \to \infty$, thus, the series diverges.