Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.9 Exercises - Page 775: 9

Answer

$f(x)=1+2x+2x^2+2x^3+\ldots$ Interval of convergence: $(-1,1)$

Work Step by Step

$\frac{1}{1-x}=1+x+x^2+x^3+\ldots$ where $|x|<1$....................(1) Multiply (1) by $x$, $\frac{x}{1-x}=x+x^2+x^3+x^4+\ldots$ where $|x|<1$.................(2) Adding the two series above, $\frac{1+x}{1-x}=1+2x+2x^2+2x^3+\ldots$ where $|x|<1$. Thus, we get $f(x)=1+2x+2x^2+2x^3+\ldots$ with the interval of convergence $(-1,1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.