Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.9 Exercises - Page 775: 6

Answer

The power series for $f(x) $ is $\sum_{n=0}^\infty\frac{x^n}{10^{n+1}}$ and the interval of convergence is $(-10,10)$.

Work Step by Step

The function of $f(x)$ can be rewritten as $f(x)=\frac{1}{10}\cdot \frac{1}{1+x/10}$. We know the following power series: $\frac{1}{1-x}=\sum_{n=0}^\infty x^n$ where $|x|<1$ Replacing $x$ by $-x/10$, $\frac{1}{1+x/10}=\sum_{n=0}^\infty (x/10)^n$ where $|-x/10|<1$ $\frac{1}{10}\cdot \frac{1}{1+x/10}=\frac{1}{10}\sum_{n=0}^\infty \frac{x^n}{10^n}$ where $|x|<10$ $f(x)=\sum_{n=0}^\infty \frac{x^n}{10^{n+1}}$ the interval of convergence is $(-10,10)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.