Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.9 Exercises - Page 775: 12

Answer

The power series for $f(x)$ is $\sum_{n=0}^\infty (-2^n-1)x^n$ with the interval of convergence is $\left(-\frac{1}{2},\frac{1}{2}\right)$.

Work Step by Step

The function of $f(x)$ can be rewritten as: $f(x)=\frac{(2x+1)-(x-1)}{(2x+1)(x-1)}=\frac{1}{x-1}-\frac{1}{2x+1}=-\frac{1}{1-x}-\frac{1}{1+2x}$ We need the following power series: $\frac{1}{1-x}=\sum_{n=0}^\infty x^n$ where $|x|<1$...........(1) Multiplying Equation (1) by $-1$, $-\frac{1}{1-x}=\sum_{n=0}^\infty -x^n$ where $|x|<1$..........(2) Replacing $x$ with $2x$ in Equation (1), $\frac{1}{1+2x}=\sum_{n=0}^\infty (2x)^n$ where $|2x|<1$ Multiplying by $-1$, $-\frac{1}{1+2x}=\sum_{n=0}^\infty -2^nx^n$ where $|x|<\frac{1}{2}$.............(3) Adding Equation (3) with Equation (2), we get $-\frac{1}{1+2x}-\frac{1}{1-x}=\sum_{n=0}^\infty (-2^n-1)x^n$ where $|x|<\frac{1}{2}$ and $|x|<1$ $f(x)=\sum_{n=0}^\infty (-2^n-1)x^n$ where $|x|<\frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.