Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.9 Exercises - Page 775: 11

Answer

The power series: $\sum_{n=0}^\infty (-\frac{1}{2^{n+1}}-(-1)^n)x^n$ Interval of convergence: $(-1,1)$

Work Step by Step

The function of $f(x)$ can be rewritten as $f(x)=\frac{(x+1)-(x-2)}{(x-2)(x+1)}=\frac{1}{x-2}-\frac{1}{x+1}=-\frac{1}{2}\cdot \frac{1}{1-x/2}-\frac{1}{1+x}$ Find the power series for each fraction. We need the following power series: $\frac{1}{1-x}=\sum_{n=0}^\infty x^n$ where $|x|<1$..................(1) Replacing $x$ by $-x$ in Equation (1), $\frac{1}{1+x}=\sum_{n=0}^\infty (-x)^n$ where $|-x|<1$ $\frac{1}{1+x}=\sum_{n=0}^\infty (-1)^nx^n$ where $|x|<1$..................(2) Replacing $x$ by $x/2$ in Equation (1), $\frac{1}{1-x/2}=\sum_{n=0}^\infty (x/2)^n$ where $|x/2|<1$ $\frac{1}{1-x/2}=\sum_{n=0}^\infty \frac{x^n}{2^n}$ where $|x|<2$ Multiplying by $-\frac{1}{2}$, $-\frac{1}{2}\cdot \frac{1}{1-x/2}=\sum_{n=0}^\infty \frac{x^n}{-2^{n+1}}$ where $|x|<2$........(3) Substracting Equation (3) with (2), we get $f(x)=\sum_{n=0}^\infty (-\frac{1}{2^{n+1}}-(-1)^n)x^n$ where $|x|<1$ and $|x|<2$ $f(x)=\sum_{n=0}^\infty (-\frac{1}{2^{n+1}}-(-1)^n)x^n$ where $|x|<1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.