Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.9 Exercises - Page 775: 10

Answer

The power series for $f(x)$ is $\sum_{n=0}^\infty \frac{x^{3n+2}}{a^{3n+3}}$ The interval of convergence is $(-|a|,|a|)$

Work Step by Step

$\frac{1}{1-x}=\sum_{n=0}^\infty x^n$ where $|x|<1$ Replacing $x$ by $x^3/a^3$, $\frac{1}{1-x^3/a^3}=\sum_{n=0}^\infty (x^3/a^3)^n$ where $|x^3/a^3|<1$ $\frac{a^3}{a^3-x^3}=\sum_{n=0}^\infty \frac{x^{3n}}{a^{3n}}$ where $|x|^3<|a|^3$ Multiplying by $\frac{x^2}{a^3}$, $\frac{x^2}{a^3-x^3}=\sum_{n=0}^\infty \frac{x^{3n+2}}{a^{3n+3}}$ where $|x|<|a|$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.