Answer
$T(t)=\displaystyle \frac{1090}{1+0.412(1.09)^{-t}}$
Level-off value is $N=1090.$
Work Step by Step
(We use desmos.com for the calculations/graph below.)
Logistic Model form: $\displaystyle \quad R=\frac{N}{1+Ab^{-t}}$
1. create a table with variable names $t$ and $T$ and enter the data.
2. in the next free cell, enter
$T\sim N/1+Ab^{-t}$
The calculator returns $\left\{\begin{array}{l}
N=1090\\
A=0.412\\
b=1.09
\end{array}\right.$
(rounded to 3 significant figures.)
$T(t)=\displaystyle \frac{1090}{1+0.412(1.09)^{-t}}$
Level-off value is $N=1090.$