Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 9 - Section 9.4 - Logistic Functions and Models - Exercises - Page 669: 29

Answer

$f(t)=\displaystyle \frac{3000}{1+29(2^{1/5})^{-t}}$ It will take about $16$ days.

Work Step by Step

Logistic Model form: $\displaystyle \quad f(t)=\frac{N}{1+Ab^{-t}}$ $N$ is the limiting value, the total available market. $N=3000$ Now (t=0 days), we are given $f(0)=100 \quad \Rightarrow \quad \left\{\begin{array}{ll} 100 & =\frac{3,000}{1+Ab^{-0}}\\ 1+A & =3000/100\\ A & =30-1=29 \end{array}\right.$ Initially doubling sales every 5 days, $b^{5}=2$ (because for small t, f(t) behaves exponentially) So, $b=2^{1/5}$ The model is $f(t)=\displaystyle \frac{3000}{1+29(2^{1/5})^{-t}}$ We want the $t$ for which $f(t)=700$ $700=\displaystyle \frac{3000}{1+29(2^{1/5})^{-t}}$ $1+29(2)^{-t/5}=\displaystyle \frac{3000}{700}$ $29(2)^{-t/5}=\displaystyle \frac{30}{7}-1$ $(2)^{-t/5}=\displaystyle \frac{23/7}{29}=\frac{23}{203}$ $\displaystyle \log(2)^{-t/5}=\log\frac{23}{203}$ $-\displaystyle \frac{t}{5}\log 2=\log\frac{23}{203}$ $t=-\displaystyle \frac{5\log\frac{23}{203}}{\log 2}\approx 15.708$ days It will take about $16$ days.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.