Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 9 - Section 9.4 - Logistic Functions and Models - Exercises - Page 666: 9

Answer

$\displaystyle \qquad f(x)=\frac{6}{1+2^{-x}} $

Work Step by Step

Goal: $\displaystyle \quad f(x)=\frac{N}{1+Ab^{-x}}$, where $N$ = limiting value = $6$ (given) $f(0)=3\Rightarrow\left\{\begin{array}{ll} 3 & =\dfrac{6}{1+Ab^{0}}\\ 1+A & =6/3\\ A & =2-1=1 \end{array}\right.\qquad\Rightarrow\qquad A=1$ $f(x)=\displaystyle \frac{6}{1+b^{-x}}$ $f(1)=4\Rightarrow\left\{\begin{array}{ll} 4 & =\frac{6}{1+b^{-1}}\\ & \\ 1+b & =6/4\\ b^{-1} & =3/2-1=1/2\\ b & =2 \end{array}\right.$ Thus, $\displaystyle \qquad f(x)=\frac{6}{1+2^{-x}} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.