Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 9 - Section 9.4 - Logistic Functions and Models - Exercises - Page 666: 10

Answer

$\displaystyle \qquad f(x)=\frac{4}{1+3(3^{-x})} $

Work Step by Step

Goal: $\displaystyle \quad f(x)=\frac{N}{1+Ab^{-x}}$, where $N$ = limiting value = $4$ (given) $f(0)=1\Rightarrow\left\{\begin{array}{ll} 1 & =\dfrac{4}{1+Ab^{0}}\\ 1+A & =4\\ A & =4-1=3 \end{array}\right.\qquad\Rightarrow\qquad A=3$ $f(x)=\displaystyle \frac{4}{1+3b^{-x}}$ $f(1)=2\Rightarrow\left\{\begin{array}{ll} 2 & =\dfrac{4}{1+3b^{-1}}\\ 1+3b^{-1} & =4/2\\ 3b^{-1} & =2-1=1\\ b^{-1} & =1/3\\ b&=3 \end{array}\right.$ Thus, $\displaystyle \qquad f(x)=\frac{4}{1+3(3^{-x})} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.