Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Review - Review Exercises - Page 1139: 37

Answer

$$\ln \left( 5 \right)$$

Work Step by Step

$$\eqalign{ & \int_0^2 {\int_0^{2x} {\frac{1}{{{x^2} + 1}}} dydx} \cr & \int_0^2 {\left[ {\int_0^{2x} {\frac{1}{{{x^2} + 1}}} dy} \right]dx} \cr & \int_0^2 {\left( {\frac{1}{{{x^2} + 1}}} \right)\left[ {\int_0^{2x} {dy} } \right]dx} \cr & {\text{Evaluate inner integral}} \cr & \int_0^{2x} {dy} = \left[ y \right]_{y = 0}^{y = 2x} \cr & = 2x - 0 \cr & = 2x \cr & {\text{Therefore,}} \cr & \int_0^2 {\left( {\frac{1}{{{x^2} + 1}}} \right)\left[ {\int_0^{2x} {dy} } \right]dx} = \int_0^2 {\left( {\frac{1}{{{x^2} + 1}}} \right)\left[ {2x} \right]dx} \cr & = \int_0^2 {\frac{{2x}}{{{x^2} + 1}}dx} \cr & {\text{Integrating}} \cr & {\text{ = }}\left[ {\ln \left( {{x^2} + 1} \right)} \right]_0^2 \cr & = \ln \left( {{2^2} + 1} \right) - \ln \left( {{0^2} + 1} \right) \cr & = \ln \left( 5 \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.