Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Review - Review Exercises - Page 1139: 17

Answer

$${f_{xx}}\left( {1,0} \right) - {f_{xx}}\left( {3,2} \right) = 0$$

Work Step by Step

$$\eqalign{ & f\left( {x,y} \right) = 4x + 5y - 6xy \cr & {\text{Find }}{f_x} \cr & {f_x} = {f_x}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ {4x + 5y - 6xy} \right] \cr & {\text{Consider }}y{\text{ as a constant}} \cr & {f_x} = 4\left( 1 \right) + 5\left( 0 \right) - 6\left( 1 \right)y \cr & {f_x} = 4 - 6y \cr & \cr & {\text{Find }}{f_{xx}} \cr & {f_{xx}} = \frac{\partial }{{\partial x}}\left[ {{f_x}} \right] \cr & {f_{xx}} = \frac{\partial }{{\partial x}}\left[ {4 - 6y} \right] \cr & {f_{xx}} = 0 \cr & \cr & {\text{Calculate }}{f_{xx}}\left( {1,0} \right) - {\text{ }}{f_{xx}}\left( {3,2} \right) \cr & {f_{xx}}\left( {1,0} \right) = 0 \cr & {f_{xx}}\left( {3,2} \right) = 0 \cr & {f_{xx}}\left( {1,0} \right) - {f_{xx}}\left( {3,2} \right) = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.