Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Review - Review Exercises - Page 1139: 35

Answer

$$2$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\int_0^2 {\left( {2xy} \right)} dxdy} \cr & \int_0^1 {\left[ {\int_0^2 {\left( {2xy} \right)} dx} \right]dy} \cr & \int_0^1 {2y\left[ {\int_0^2 x dx} \right]dy} \cr & {\text{Evaluate inner integral}} \cr & \int_0^2 x dx = \left[ {\frac{{{x^2}}}{2}} \right]_{x = 0}^{x = 2} \cr & = \frac{{{2^2}}}{2} \cr & = 2 \cr & {\text{Therefore,}} \cr & \int_0^1 {2y\left[ {\int_0^2 x dx} \right]dy} = \int_0^1 {2y\left( 2 \right)dy} \cr & \int_0^1 {4ydy} \cr & {\text{Integrating}} \cr & {\text{ = }}\left[ {2{y^2}} \right]_0^1 \cr & = 2{\left( 1 \right)^2} \cr & = 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.