Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Review - Review Exercises - Page 1139: 15

Answer

$${f_x} = 2x + y,{\text{ }}{f_y} = x,{\text{ and }}{f_{yy}} = 0$$

Work Step by Step

$$\eqalign{ & f\left( {x,y} \right) = {x^2} + xy \cr & {\text{Find }}{f_x} \cr & {f_x} = {f_x}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ {{x^2} + xy} \right] \cr & {f_x} = \frac{\partial }{{\partial x}}\left[ {{x^2} + xy} \right] \cr & {f_x} = \frac{\partial }{{\partial x}}\left[ {{x^2}} \right] + \frac{\partial }{{\partial x}}\left[ {xy} \right] \cr & {\text{Consider }}y{\text{ as a constant}} \cr & {f_x} = \frac{\partial }{{\partial x}}\left[ {{x^2}} \right] + y\frac{\partial }{{\partial x}}\left[ x \right] \cr & {f_x} = 2x + y \cr & \cr & {\text{Find }}{f_y} \cr & {f_y} = {f_y}\left( {x,y} \right) = \frac{\partial }{{\partial y}}\left[ {{x^2} + xy} \right] \cr & {f_y} = \frac{\partial }{{\partial y}}\left[ {{x^2} + xy} \right] \cr & {f_y} = \frac{\partial }{{\partial y}}\left[ {{x^2}} \right] + \frac{\partial }{{\partial y}}\left[ {xy} \right] \cr & {\text{Consider }}x{\text{ as a constant}} \cr & {f_y} = \frac{\partial }{{\partial y}}\left[ {{x^2}} \right] + x\frac{\partial }{{\partial y}}\left[ y \right] \cr & {f_y} = 0 + x\left( 1 \right) \cr & {f_y} = x \cr & \cr & {\text{Find }}{f_{yy}} \cr & {f_{yy}} = \frac{\partial }{{\partial y}}\left[ {{f_y}} \right] \cr & {f_{yy}} = \frac{\partial }{{\partial y}}\left[ x \right] \cr & {\text{Consider }}x{\text{ as a constant}} \cr & {f_{yy}} = 0 \cr & \cr & {f_x} = 2x + y,{\text{ }}{f_y} = x,{\text{ and }}{f_{yy}} = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.