Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Review - Review Exercises - Page 1139: 36

Answer

$${e^2}$$

Work Step by Step

$$\eqalign{ & \int_1^2 {\int_0^1 {xy{e^{x + y}}} dxdy} \cr & {\text{Recall that }}{e^{a + b}} = {e^a}{e^b} \cr & \int_1^2 {\int_0^1 {xy{e^x}{e^y}} dxdy} \cr & \int_1^2 {\left[ {\int_0^1 {xy{e^x}{e^y}} dx} \right]dy} \cr & \int_1^2 {y{e^y}\left[ {\int_0^1 {x{e^x}} dx} \right]dy} \cr & {\text{Evaluate inner integral}} \cr & \int_0^1 {x{e^x}} dx = \left[ {x{e^x} - {e^x}} \right]_{x = 0}^{x = 1} \cr & = \left( {{e^1} - {e^1}} \right) - \left( {0{e^0} - {e^0}} \right) \cr & = 1 \cr & {\text{Therefore,}} \cr & \int_1^2 {y{e^y}\left[ {\int_0^1 {x{e^x}} dx} \right]dy} = \int_1^2 {y{e^y}\left( 1 \right)dy} \cr & \int_1^2 {y{e^y}dy} \cr & {\text{Integrating}} \cr & {\text{ = }}\left[ {y{e^y} - {e^y}} \right]_1^2 \cr & = \left( {2{e^2} - {e^2}} \right) - \left( {{e^1} - {e^1}} \right) \cr & = {e^2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.