Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 10 - Section 10.3 - Limits and Continuity: Algebraic Viewpoint - Exercises - Page 719: 50

Answer

$+\infty$

Work Step by Step

When $x$ approaches $3$ from the left, $3-x$ is positive, so we can write: $3-x=\sqrt{(3-x)^{2}}$ Thus: $\displaystyle \lim_{x\rightarrow 3^{-}}\frac{\sqrt{3-x}}{3-x}=\lim_{x\rightarrow 3^{-}}\frac{\sqrt{3-x}}{\sqrt{(3-x)^{2}}}=\lim_{x\rightarrow 3^{-}}\sqrt{\frac{3-x}{(3-x)^{2}}}=\sqrt{\lim_{x\rightarrow 3^{-}}\frac{1}{3-x}}$ The form of $\displaystyle \lim_{x\rightarrow 3^{-}}\frac{1}{3-x}$ is $\displaystyle \frac{k}{0^{+}}=\pm\infty \qquad \frac{k}{Small}=Big $ and $\sqrt{Big}=Big\qquad$ Thus, we have: $\displaystyle \lim_{x\rightarrow 3^{-}}\frac{\sqrt{3-x}}{3-x}=+\infty$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.