Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 13 - The Trigonometric Functions - 13.3 Integrals of Trigonometric Functions - 13.3 Exercises - Page 697: 19

Answer

$$\frac{1}{6}\ln \left| {\sin {x^6}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {{x^5}\cot {x^6}} dx \cr & {\text{set }}u = {x^6}{\text{ then }}\frac{{du}}{{dx}} = 6{x^5},\,\,\,\,\,\,\,\,\frac{{du}}{{6{x^5}}} = dx \cr & {\text{write the integrand in terms of }}u \cr & \int {{x^5}\cot {x^6}} dx = \int {{x^5}\cot u} \left( {\frac{{du}}{{6{x^5}}}} \right) \cr & {\text{cancel the common factor}} \cr & = \int {\cot u} \left( {\frac{{du}}{6}} \right) \cr & {\text{use multiple constant rule}} \cr & = \frac{1}{6}\int {\cot u} du \cr & {\text{ using the Basic Trigonometric integral }}\int {\cot x} dx = \ln \left| {\sin x} \right| + C{\text{ }}\left( {{\text{see page 694}}} \right) \cr & = \frac{1}{6}\ln \left| {\sin u} \right| + C \cr & {\text{write in terms of }}x \cr & = \frac{1}{6}\ln \left| {\sin {x^6}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.