Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.2 - Trigonometric Integrals - 7.2 Exercises - Page 485: 60

Answer

$\int_0^2\sin (2\pi x) \cos (5\pi x) dx = 0$

Work Step by Step

It follows from the graph that $\int_0^2\sin (2\pi x) \cos (5\pi x) dx = 0$, since the bulge above the x-axis appears to have a corresponding depression below the x-axis. $I=\int_0^2\sin (2\pi x) \cos 5\pi x dx$ Using: $\sin u\cos v=\frac{1}{2}\left [ \sin(u+v)+\sin(u-v) \right ] \quad$ $=\int_0^2\frac{1}{2}\left [ \sin(2\pi x+5\pi x)+\sin(2\pi x-5\pi x) \right ]dx \quad$ $=\int_0^2\frac{1}{2}\left [ \sin(7\pi x)+\sin(-3\pi x) \right ]dx \quad$ $=\frac{1}{2} \left [\int_0^{2} \sin(7\pi x)dx +\int_0^{2} \sin(-3\pi x) dx\right ] \quad $ $\begin{Bmatrix} w=7\pi x & \\ dw=7\pi dx & \frac{dw}{7\pi }=dx \end{Bmatrix}$ $\begin{Bmatrix} m=-3\pi x & \\ dw=-3\pi dx & \frac{dw}{-3\pi }=dx \end{Bmatrix}$ $=\frac{1}{2} \left [\int_0^{14\pi} \sin(w) \frac{dw}{7\pi } +\int_0^{-6\pi} \sin(m) \frac{dw}{-3\pi }\right ] \quad $ $=\frac{1}{2} \left [\int_0^{14\pi} \sin(w) \frac{dw}{7\pi } -\int_{-6\pi}^{0} \sin(m) (-\frac{dw}{3\pi })\right ] \quad $ $=\frac{1}{14\pi} \left [(-\cos w) \right ]_0^{14\pi} \quad +\frac{1}{6\pi} \left [(-\cos w) \right ]_{-6\pi}^{0} \quad $ $=\frac{1}{14\pi} (-1+1) +\frac{1}{6\pi}(-1+1)$ $=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.