Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.7 - Surface Integrals - 16.7 Exercise - Page 1133: 35

Answer

$3.4895$

Work Step by Step

Since, $\iint_S F \cdot dS=\iint_S F \cdot n dS$ where, $n$ denotes the unit vector. and $dS=n dA=\pm \dfrac{(r_u \times r_v)}{|r_u \times r_v|}|r_u \times r_v| dA=\pm (r_u \times r_v) dA$ The flux through a surface can be defined only when the surface is orientable. Here, we have $\iint_S x^2y^2 z^2 dS =\iint_{D} x^2 \times y^2 \times z^2 \sqrt{1+(\dfrac{dz}{dx})^2+ (\dfrac{dz}{dy})^2} dA$ or, $=\iint_{D} x^2y^2z^2 \times \sqrt{1+16x^2+ 4y^2} dy dx$ or, $=\iint_{D} x^2y^2 \times (3-2x^2-y^2)^2 \times \sqrt{1+16x^2+ 4y^2} dy dx$ or, $=\int_{-(\sqrt{3/2})}^{(\sqrt{3/2}) } x^2y^2 \times (3-2x^2-y^2)^2 \times \sqrt{1+16x^2+ 4y^2} dy dx$ Now, use a calculating tool. Hence, we have $\iint_S x^2y^2 z^2 dS \approx 3.4895$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.