Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.7 - Surface Integrals - 16.7 Exercise - Page 1133: 10

Answer

$4$

Work Step by Step

Since, $\iint_S F \cdot dS=\iint_S F \cdot n dS$ where, $n$ denotes the unit vector. and $dS=n dA=\pm \dfrac{(r_u \times r_v)}{|r_u \times r_v|}|r_u \times r_v| dA=\pm (r_u \times r_v) dA$ The flux through a surface can be defined only when the surface is orientable. Here, we have $\iint_S x z dS =\iiint_{D}x(4-2x-2y) \times \sqrt {(-2)^2+(-2)^2+1^2} dA$ or, $=3 \times \int_{0}^{2} \int_0^{2- x} 4x-2x^2 -2xy dy dx$ or, $= 3 \times \int_{0}^{2} (4x-2x^2) (2-x) -x (2-x)^2 dx$ or, $=3 \times \int_{0}^{2} x(2-x)^2 dx$ or, $=3 \times \int_0^2 2x^2-x^3 dx$ Thus, we have $\iint_S x z dS=3[\dfrac{2x^3}{3}-\dfrac{x^4}{4}]_0^2=4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.