Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.7 - Surface Integrals - 16.7 Exercise - Page 1133: 33

Answer

$4.5822$

Work Step by Step

Since, $\iint_S F \cdot dS=\iint_S F \cdot n dS$ where $n$ denotes the unit vector. and $dS=n dA=\pm \dfrac{(r_u \times r_v)}{|r_u \times r_v|}|r_u \times r_v| dA=\pm (r_u \times r_v) dA$ The flux through a surface can be defined only when the surface is orientable. Here, we have $\iint_S (x^2+y^2+z^2) dS =\int_{0}^{1} \int_0^1 (x^2+y^2+z^2) \times \sqrt{1+(dx/dt)^2+ (dy/dt)^2} dA$ or, $=\int_{0}^{1} \int_0^1 (x^2+y^2+z^2) \times \sqrt{1+e^{2y}+x^2 e^{2y}} dx dy$ or, $=\int_{0}^{1} \int_0^1 (x^2+y^2+x^2 \times [e^{2y}] ) \times \sqrt{1+e^{2y}+(x^2) \times [e^{2y}]} dx dy$ Now, use a calculating tool. Hence, we get $ \iint_S (x^2+y^2+z^2) dS \approx 4.5822$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.