Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.7 - Surface Integrals - 16.7 Exercise - Page 1133: 17

Answer

$16 \pi$

Work Step by Step

Since, $\iint_S F \cdot dS=\iint_S F \cdot n dS$ where, $n$ denotes the unit vector. and $dS=n dA=\pm \dfrac{(r_u \times r_v)}{|r_u \times r_v|}|r_u \times r_v| dA=\pm (r_u \times r_v) dA$ The flux through a surface can be defined only when the surface is orientable. Since, $dS=n dA=\pm \dfrac{(r_u \times r_v)}{|r_u \times r_v|}|r_u \times r_v| dA=\pm (r_u \times r_v) dA$ $\iint_S F \cdot n dS= \int_{0}^{ \pi/2} \int_0^{2 \pi} 8 \sin^2 u \cos u (4 \sin u ) dv du$ $=\int_{0}^{ \pi/2} \int_0^{2 \pi} 32 \sin^3 u \cos u dv du$ $=(32) \times \int_{0}^{ \pi/2} \int_0^{2 \pi} \sin^3 u \cos u dv du$ $=(32) [\int_{0}^{ 2\pi} dV] \times [ \int_0^{\pi/2} \sin^3 u \cos u du] $ $=(32) \cdot (2 \pi) [\dfrac{\sin^4 u}{4}]_{0}^{\pi/2}$ $=16 \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.