Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.7 - Surface Integrals - 16.7 Exercise - Page 1133: 20

Answer

$241 \pi$

Work Step by Step

The surface integral over $S_1$ is given by: $\iint_{S_1} x^2+y^2+z^2 dS= \iint_{D} (9 \sin^2 u+9 \cos^2 u+v^2) (3) dA$ or, $=3 \times \iint_{D}9+v^2 dA$ or, $=3 \times \int_{0}^{2} \int_0^{2 \pi} [9+v^2]du dv$ or, $\iint_{S_1} x^2+y^2+z^2 dS=124 \pi$ The surface integral over $S_2$ $\iint_{S_2} x^2+y^2+z^2 dS= \iint_{D} (v^2 \sin^2 u+v^2 \cos^2 u+2^2) v dA$ or, $= \int_{0}^{3} \int_0^{2 \pi}[ v^3+4v] du dv$ or,$ \iint_{S_2} x^2+y^2+z^2 dS=\dfrac{153 \pi}{2}$ The surface integral over $S_3$ is given as: $\iint_{S_3} x^2+y^2+z^2 dS= \iint_{D} (v^2 \sin^2 u+v^2 \cos^2 u+(0)^2) v dA$ or, $=\iint_{D}v^3 du dv$ or, $=(2 \pi) \times \int_{0}^{3} v^3 dv dv$ $\iint_{S_3} x^2+y^2+z^2 dS=(2 \pi) \times [\dfrac{v^4}{4}]_0^3=\dfrac{81 \pi}{2}$ Thus, we have $\iint_{S} x^2+y^2+z^2 dS=124 \pi+\dfrac{153 \pi}{2}+\dfrac{81 \pi}{2}=241 \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.