Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.5 - Surface Area - 15.5 Exercise - Page 1028: 6

Answer

$\dfrac{\pi}{3}$

Work Step by Step

The surface area of the surface can be written as: $A(S)=\iint_{D} \sqrt {1+(f_x)^2+(f_y)^2} dx \ dy$ and, $\iint_{D} dA$ is the projection of the surface on the xy-plane. Since, $x^2+z^2 =4 \implies z=\sqrt {4-x^2}$ Now, the area of the given surface is: $$A(S)=\iint_{D} \sqrt{1+(\dfrac{-x}{\sqrt {4-x^2}})^2+(0)^2} \\=\iint{D} \sqrt {\dfrac{x^2}{4-x^2}+1} dA \\ =\int_{0}^{1} \int_{0}^{1} \sqrt {\dfrac{4}{4-x^2}}dy dx \\=2 \int_{0}^{1} \sqrt {\dfrac{1}{4-x^2}}\ dy \ dx$$ Substitute $x= 2 \sin \theta \implies dx= 2 \cos \theta d \theta $ Therefore, we have: $$A(S)=2 \int_0^{ \pi/6} \sqrt {\dfrac{1}{4-4 \sin^2 \theta}} (2 \cos \theta d \theta) \\=2\int_0^{ \pi/6} \sqrt {\dfrac{1}{\cos^2 \theta}} (\cos \theta d \theta) \\=2 \int_0^{ \pi/6} d \theta \\= 2 \times (\dfrac{\pi}{6}-0) \\=\dfrac{\pi}{3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.