Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.5 - Surface Area - 15.5 Exercise - Page 1028: 14

Answer

$4.1073$

Work Step by Step

The surface area of the part $z=f(x,y)$ can be defined as: $A(S)=\iint_{D} \sqrt {1+(f_x)^2+(f_y)^2} dx \ dy$ and, $\iint_{D} dA$ is the projection of the surface on the xy-plane. Now, the area of the given surface is: $A(S)=\iint_{D} \sqrt {1+[-2x \sin (x^2+y^2]^2+[-2y \sin (x^2+y^2]^2} dA= \iint_{D} \sqrt {1+4(x^2+y^2)] \sin^2 (x^2+y^2)} dA$ Next, we need to use the polar co-ordinates because of the part $x^2+y^2$ $A(S)=\iint_{D} \sqrt {1+4(x^2+y^2)] \sin^2 (x^2+y^2)} dA \\=\int_{0}^{2\pi} \int_{0}^{1} sqrt {1+4r^2 \sin^2 r^2 (\cos^2 \theta +\sin^2 \theta ) } \ r dr d \theta \\= 2 \pi \times \int_0^{1} \sqrt {1+4r^2 \sin^2(r^2)} \ r dr $ Now, by using a calculator, we have: $A(S)=2 \pi \times \int_0^{1} \sqrt {1+4r^2 \sin^2(r^2)} \ r dr \approx 4.1073$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.