Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.5 - Surface Area - 15.5 Exercise - Page 1028: 12

Answer

$$4 \pi $$

Work Step by Step

We are given that $f(x,y,z)=x^{2}+y^{2}+z^{2}=4z$; and $f(x,y,z)=x^{2}+y^{2}+z^{2}=4$ When $z=1$, we have: $x^{2}+y^{2}=3$ $z=\sqrt {4-x^{2}-y^{2}}$ The surface area of the part $z=f(x,y)$ can be written as: $A(S)=\iint_{D} \sqrt {1+(f_x)^2+(f_y)^2} dx \ dy$ and, $\iint_{D} dA$ is the projection of the surface on the xy-plane. Now, $ f_{x}=\dfrac{-x}{\sqrt {4-x^{2}-y^{2}}}, \quad f_{y}=\dfrac{-y}{\sqrt {4-x^{2}-y^{2}}}$ Thus, $ A(S)=\iint_{D} \sqrt{[\dfrac{(-x)}{(4-x^{2}-y^{2})^{1 / 2}}]^{2}+[(-y)(4-x^{2}-y^{2})^{-1 / 2}]^{2}+1} d A \\ =\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} [\sqrt{\dfrac{r^{2}}{4-r^{2}}+1} ] r d r d \theta \\ =\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} \sqrt{\dfrac{r^{2}+4-r^{2}}{4-r^{2}}} \ r \ dr \ d\theta \\ =\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} \dfrac{2 r}{\sqrt{4-r^{2}}} \ d r \ d \theta \\ \left.=\int_{0}^{2 \pi}\left[-2\left(4-r^{2}\right)^{1 / 2}\right]_{r=0}^{r=\sqrt{3}} \ d \theta \\ =\int_{0}^{2 \pi}(-2+4) d \theta=2 \theta\right]_{0}^{2 \pi} \\=4 \pi $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.