Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 13 - Section 13.3 - Arc Length and Curvature - 13.3 Exercise - Page 868: 20

Answer

(a) The principal unit normal vector $N(t)$ is given by: $$ \begin{aligned} N(t)&=\frac{1}{\sqrt{5+25 t^{2}}}(-5 t, 1,2) \end{aligned} $$ (b) The curvature is given by: $$ \begin{aligned} k(t)&=\frac{\sqrt{5}}{\left(1+5 t^{2}\right)^{3 / 2}}. \end{aligned} $$

Work Step by Step

(a) We have a parametrization $$ r(t)=\left\langle t, \frac{1}{2} t^{2}, t^{2}\right\rangle $$ $\Rightarrow $ $$ r^{\prime}(t) =\left\langle 1, t, 2 t \right\rangle $$ $$ \begin{aligned} \left|r^{\prime}(t)\right|&=\sqrt{1+t^{2}+4 t^{2}}\\ &=\sqrt{1+5 t^{2}} \end{aligned} $$ Then, the unit tangent vector $T(t)$ is given by: $$ \begin{aligned} T(t) &=\frac{r^{\prime}(t)}{\left|r^{\prime}(t)\right|}\\ &=\frac{1}{\sqrt{1+5 t^{2}}}\langle 1, t, 2 t\rangle \end{aligned} $$ Then, we can find: $$ \begin{aligned} T^{\prime}(t)&=\frac{-5 t}{\left(1+5 t^{2}\right)^{3 / 2}}\langle 1, t, 2 t)+\frac{1}{\sqrt{1+5 t^{2}}}\langle 0,1,2\rangle\\ &=\frac{1}{\left(1+5 t^{2}\right)^{3 / 2}}\left(\left\langle-5 t,-5 t^{2},-10 t^{2}\right\rangle+\left\langle 0,1+5 t^{2}, 2+10 t^{2}\right\rangle\right) \\ &=\frac{1}{\left(1+5 t^{2}\right)^{3 / 2}}\langle-5 t, 1,2\rangle \end{aligned} $$ $\Rightarrow$ $$ \begin{aligned} \left|\mathrm{T}^{\prime}(t)\right|& =\frac{1}{\left(1+5 t^{2}\right)^{3 / 2}} \sqrt{25 t^{2}+1+4} \\ &=\frac{1}{\left(1+5 t^{2}\right)^{3 / 2}} \sqrt{25 t^{2}+5}\\ &=\frac{\sqrt{5} \sqrt{5 t^{2}+1}}{\left(1+5 t^{2}\right)^{3 / 2}} \\ &=\frac{\sqrt{5}}{1+5 t^{2}} \end{aligned} $$ Since the principal unit normal vector $N(t)$ is given by: $$ N(t)=\frac{\mathrm{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|} $$ Therefore, $$ \begin{aligned} N(t)&=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|} \\ &=\frac{1+5 t^{2}}{\sqrt{5}} \cdot \frac{1}{\left(1+5 t^{2}\right)^{3 / 2}}\langle-5 t, 1,2\rangle\\ &=\frac{1}{\sqrt{5+25 t^{2}}}(-5 t, 1,2) \end{aligned} $$ (b) The curvature is given by: $$ \begin{aligned} k(t)&=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|} \ \ \text { by using the Formula 9} \\ & =\frac{\sqrt{5} /\left(1+5 t^{2}\right)}{\sqrt{1+5 t^{2}}} \\ &=\frac{\sqrt{5}}{\left(1+5 t^{2}\right)^{3 / 2}}. \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.