Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 13 - Section 13.3 - Arc Length and Curvature - 13.3 Exercise - Page 868: 19

Answer

(a) The unit normal vector $N(t)$ is given by: $$ \begin{aligned} N(t)&=\frac{1}{e^{2 t}+1}\left\langle 1-e^{2 t}, \sqrt{2} e^{t}, \sqrt{2} e^{t}\right\rangle \end{aligned} $$ (b) The curvature is given by: $$ \begin{aligned} k(t)&=\frac{\sqrt{2} e^{2 t}}{\left(e^{2 t}+1\right)^{2}} \end{aligned} $$

Work Step by Step

(a) We have a parametrization $$ r(t)= \sqrt{2} t \mathbf{i}+e^{t} \mathbf{j}+e^{-t} \mathbf{k} \\ =\left\langle\sqrt{2} t, e^{t}, e^{-t}\right\rangle $$ $\Rightarrow $ $$ \begin{aligned} r^{\prime}(t) &= \left\langle\sqrt{2}, e^{t},-e^{-t}\right\rangle \end{aligned} $$ $$ \begin{aligned} \left|r^{\prime}(t)\right|&=\sqrt{2+e^{2 t}+e^{-2 t}}\\ &=\sqrt{\left(e^{t}+e^{-t}\right)^{2}}\\ &=e^{t}+e^{-t} \end{aligned} $$ Then, the unit tangent vector $T(t)$ is given by: $$ \begin{aligned} T(t) &=\frac{r^{\prime}(t)}{\left|r^{\prime}(t)\right|}\\ &=\frac{1}{e^{t}+e^{-t}}\left\langle\sqrt{2}, e^{t},-e^{-t}\right\rangle , \ \ \ \text{multiplying by} \ \ \frac{e^{t}}{e^{t}},\\ &=\frac{1}{e^{2 t}+1}\left\langle\sqrt{2} e^{t}, e^{2 t},-1\right\rangle \end{aligned} $$ Then, we can find: $$ \begin{aligned} T^{\prime}(t)&=\frac{1}{e^{2 t}+1}\left\langle\sqrt{2} e^{t}, 2 e^{2 t}, 0\right\rangle -\frac{2 e^{2 t}}{\left(e^{2 t}+1\right)^{2}}\left\langle\sqrt{2} e^{t}, e^{2 t},-1\right\rangle \\ &=\frac{1}{\left(e^{2 t}+1\right)^{2}}\left[\left(e^{2 t}+1\right)\left\langle\sqrt{2} e^{t}, 2 e^{2 t}, 0\right\rangle-2 e^{2 t}\left\langle\sqrt{2} e^{t}, e^{2 t},-1\right\rangle\right] \\ &=\frac{1}{\left(e^{2 t}+1\right)^{2}}\left\langle\sqrt{2} e^{t}\left(1-e^{2 t}\right), 2 e^{2 t}, 2 e^{2 t}\right\rangle \end{aligned} $$ $\Rightarrow$ $$ \begin{aligned} \left|\mathrm{T}^{\prime}(t)\right|& =\frac{1}{\left(e^{2 t}+1\right)^{2}} \sqrt{2 e^{2 t}\left(1-2 e^{2 t}+e^{4 t}\right)+4 e^{4 t}+4 e^{4 t}} \\ &=\frac{1}{\left(e^{2 t}+1\right)^{2}} \sqrt{2 e^{2 t}\left(1+2 e^{2 t}+e^{4 t}\right)}\\ &=\frac{1}{\left(c^{2 t}+1\right)^{2}} \sqrt{2 e^{2 t}\left(1+e^{2 t}\right)^{2}}\\ &=\frac{\sqrt{2} e^{t}\left(1+e^{2 t}\right)}{\left(e^{2 t}+1\right)^{2}} \\ &=\frac{\sqrt{2} e^{t}}{e^{2 t}+1} \end{aligned} $$ Since the principal unit normal vector $N(t)$ is given by: $$ N(t)=\frac{\mathrm{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|} $$ Therefore, $$ \begin{aligned} N(t)&=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}=\frac{e^{2 t}+1}{\sqrt{2} e^{t}} \frac{1}{\left(e^{2 t}+1\right)^{2}}\left\langle\sqrt{2} e^{t}\left(1-e^{2 t}\right), 2 e^{2 t}, 2 e^{2 t}\right\rangle \\ &=\frac{1}{\sqrt{2} e^{t}\left(e^{2 t}+1\right)}\left\langle\sqrt{2} e^{t}\left(1-e^{2 t}\right), 2 e^{2 t}, 2 e^{2 t}\right\rangle\\ &=\frac{1}{e^{2 t}+1}\left\langle 1-e^{2 t}, \sqrt{2} e^{t}, \sqrt{2} e^{t}\right\rangle \end{aligned} $$ (b) The curvature is given by: $$ \begin{aligned} k(t)&=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|} \ \ \text { by using the Formula 9} \\ & =\frac{\sqrt{2} e^{t}}{e^{2 t}+1} \cdot \frac{1}{e^{t}+e^{-t}}\\ &=\frac{\sqrt{2} e^{t}}{e^{3 t}+2 e^{t}+e^{-t}} \\ &=\frac{\sqrt{2} e^{2 t}}{e^{4 t}+2 e^{2 t}+1}\\ &=\frac{\sqrt{2} e^{2 t}}{\left(e^{2 t}+1\right)^{2}}. \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.