Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

APPENDIX D - Trigonometry - D Exercises: 43


$ sin(\frac{\pi}{2}+x)=cosx$

Work Step by Step

Need to prove $ sin(\frac{\pi}{2}+x)=cosx$ $sin(A+B)=sinA cos B+cos A sin B$ Thus, $ sin(\frac{\pi}{2}+x)=sin\frac{\pi}{2} cos x+cos \frac{\pi}{2} sin x$ $sin(\frac{\pi}{2}+x)=1*cos x+0*sin x$ Hence, $ sin(\frac{\pi}{2}+x)=cosx$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.