Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

APPENDIX D - Trigonometry - D Exercises - Page A 32: 42


$ cos(\frac{\pi}{2}-x)=sinx$

Work Step by Step

Need to prove $ cos(\frac{\pi}{2}-x)=sinx$ $ cos(A-B)=cos A cos B+sinA sin B$ Thus, $ cos(\frac{\pi}{2}-x)=cos \frac{\pi}{2} cos x+sin\frac{\pi}{2} sin x$ $ cos(\frac{\pi}{2}-x)=0*cos x+1*sin x$ Hence, $ cos(\frac{\pi}{2}-x)=sinx$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.