Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 9 - Power Series - 9.2 Properties of Power Series - 9.2 Exercises - Page 683: 58

Answer

$\sum_{k=0}^{\infty} \dfrac{(-1)^k \ (x^{2k+1})}{(k+1)^2}$

Work Step by Step

We are given the power series $x-\dfrac{x^3}{4}+\dfrac{x^5}{9}-\dfrac{x^7}{16}+...$ or, $x-\dfrac{x^3}{4}+\dfrac{x^5}{9}-\dfrac{x^7}{16}+...=\dfrac{(-1)^0 \cdot x^{(2)(0)+1}}{(0+1)^2}+\dfrac{(-1)^1 \cdot x^{(2)(1)+1}}{(1+1)^2}......$ The given series can be represented in the summation form as: $x-\dfrac{x^3}{4}+\dfrac{x^5}{9}-\dfrac{x^7}{16}+...=\sum_{k=0}^{\infty} \dfrac{(-1)^k \ (x^{2k+1})}{(k+1)^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.